skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Miesel, Jessica"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Changes in soil organic carbon (SOC) and nitrogen (SON) are strongly affected by land management, but few long-term comparative studies have surveyed changes throughout the whole soil profile. We quantified 25-year SOC and SON changes to 1 m in 10 replicate ecosystems at an Upper Midwest, USA site. We compared four annual cropping systems in maize (Zea mays)-soybean (Glycine max)-winter wheat (Triticum aestivum) rotations, each managed differently (Conventional, No-till, Reduced input, and Biologically based); in three managed perennial systems (hybrid Poplar (Populus × euramericana), Alfalfa (Medicago sativa), and Conifer (Pinus spp.); and in three successional systems (Early, Mid- and Late succession undergoing a gradual change in species composition and structure over time). Both Reduced input and Biologically based systems included winter cover crops. Neither SOC nor SON changed significantly in the Conventional or Late successional systems over 25 years. All other systems gained SOC and SON to different degrees. SOC accrual was fastest in the Early successional system (0.8 ± 0.1 Mg C ha−1 y−1) followed by Alfalfa and Conifer (avg. 0.7 ± 0.1 Mg C ha−1 y−1), Poplar, Reduced input, and Biologically based systems (avg. 0.4 ± 0.1 Mg C ha−1 y−1), and Mid-successional and No-till systems (0.3 and 0.2 Mg C ha−1 y−1, respectively). Over the most recent 12 years, rates of SOC accrual slowed in all systems except Reduced input and Mid-successional. There was no evidence of SOC loss at depth in any system, including No-till. Rates of SON accrual ranged from 64.7 to 0.8 kg N ha−1 y−1 in the order Alfalfa ≥ Early successional > Reduced input and Biologically based ≥ Poplar > No-till and Conifer > Mid-successional systems. Pyrogenic C levels in the Conventional, Early, and Late successional systems were similar despite 17 years of annual burning in the Early successional system (∼ 15 % of SOC to 50 cm, on average, and ∼40 % of SOC from 50 to 100 cm). Results underscore the importance of cover crops, perennial crops, and no-till options for sequestering whole profile C in intensively managed croplands. 
    more » « less
  2. Abstract The decision to establish a network of researchers centers on identifying shared research goals. Ecologically specific regions, such as the USA’s National Ecological Observatory Network’s (NEON’s) eco-climatic domains, are ideal locations by which to assemble researchers with a diverse range of expertise but focused on the same set of ecological challenges. The recently established Great Lakes User Group (GLUG) is NEON’s first domain specific ensemble of researchers, whose goal is to address scientific and technical issues specific to the Great Lakes Domain 5 (D05) by using NEON data to enable advancement of ecosystem science. Here, we report on GLUG’s kick off workshop, which comprised lightning talks, keynote presentations, breakout brainstorming sessions and field site visits. Together, these activities created an environment to foster and strengthen GLUG and NEON user engagement. The tangible outcomes of the workshop exceeded initial expectations and include plans for (i) two journal articles (in addition to this one), (ii) two potential funding proposals, (iii) an assignable assets request and (iv) development of classroom activities using NEON datasets. The success of this 2.5-day event was due to a combination of factors, including establishment of clear objectives, adopting engaging activities and providing opportunities for active participation and inclusive collaboration with diverse participants. Given the success of this approach we encourage others, wanting to organize similar groups of researchers, to adopt the workshop framework presented here which will strengthen existing collaborations and foster new ones, together with raising greater awareness and promotion of use of NEON datasets. Establishing domain specific user groups will help bridge the scale gap between site level data collection and addressing regional and larger ecological challenges. 
    more » « less
  3. As wildfires become larger and more severe across western North America, it grows increasingly important to understand how they will affect the biogeochemical processes influencing ecosystem recovery. Soil nitrogen (N) cycling is a key process constraining recovery rates. In addition to its direct responses to fire, N cycling can also respond to other post-fire transformations, including increases or decreases in microbial biomass, soil moisture, and pH. To examine the short-term effects of wildfire on belowground processes in the northern Sierra Nevada, we collected soil samples along a gradient from unburned to high fire severity over 10  months following a wildfire. This included immediate pre- and post-fire sampling for many variables at most sites. While season and soil moisture did not substantially alter pH, microbial biomass, net N mineralisation, and nitrification in unburned locations, they interacted with burn severity in complex ways to constrain N cycling after fire. In areas that burned, pH increased (at least initially) after fire, and there were non-monotonic changes in microbial biomass. Net N mineralisation also had variable responses to wetting in burned locations. These changes suggest burn severity and precipitation patterns can interact to alter N cycling rates following fire. 
    more » « less
  4. Abstract Understanding the chemical composition of our planet's crust was one of the biggest questions of the 20th century. More than 100 years later, we are still far from understanding the global patterns in the bioavailability and spatial coupling of elements in topsoils worldwide, despite their importance for the productivity and functioning of terrestrial ecosystems. Here, we measured the bioavailability and coupling of thirteen macro‐ and micronutrients and phytotoxic elements in topsoils (3–8 cm) from a range of terrestrial ecosystems across all continents (∼10,000 observations) and in response to global change manipulations (∼5,000 observations). For this, we incubated between 1 and 4 pairs of anionic and cationic exchange membranes per site for a mean period of 53 days. The most bioavailable elements (Ca, Mg, and K) were also amongst the most abundant in the crust. Patterns of bioavailability were biome‐dependent and controlled by soil properties such as pH, organic matter content and texture, plant cover, and climate. However, global change simulations resulted in important alterations in the bioavailability of elements. Elements were highly coupled, and coupling was predictable by the atomic properties of elements, particularly mass, mass to charge ratio, and second ionization energy. Deviations from the predictable coupling‐atomic mass relationship were attributed to global change and agriculture. Our work illustrates the tight links between the bioavailability and coupling of topsoil elements and environmental context, human activities, and atomic properties of elements, thus deeply enhancing our integrated understanding of the biogeochemical connections that underlie the productivity and functioning of terrestrial ecosystems in a changing world. 
    more » « less
  5. Abstract Fire has transformative effects on soil biological, chemical, and physical properties in terrestrial ecosystems around the world. While methods for estimating fire characteristics and associated effects aboveground have progressed in recent decades, there remain major challenges in characterizing soil heating and associated effects belowground. Overcoming these challenges is crucial for understanding how fire influences soil carbon storage, biogeochemical cycling, and ecosystem recovery. In this paper, we present a novel framework for characterizing belowground heating and effects. The framework includes (1) an open‐source model to estimate fire‐driven soil heating, cooling, and the biotic effects of heating across depths and over time (Soil Heating in Fire model; SheFire) and (2) a simple field method for recording soil temperatures at multiple depths using self‐contained temperature sensor and data loggers (i.e., iButtons), installed along a wooden stake inserted into the soil (i.e., an iStake). The iStake overcomes many logistical challenges associated with obtaining temperature profiles using thermocouples. Heating measurements provide inputs to the SheFire model, and modeled soil heating can then be used to derive ecosystem response functions, such as heating effects on microorganisms and tissues. To validate SheFire estimates, we conducted a burn table experiment using iStakes to record temperatures that were in turn used to fit the SheFire model. We then compared SheFire predicted temperatures against measured temperatures at other soil depths. To benchmark iStake measurements against those recorded by thermocouples, we co‐located both types of sensors in the burn table experiment. We found that SheFire demonstrated skill in interpolating and extrapolating soil temperatures, with the largest errors occurring at the shallowest depths. We also found that iButton sensors are comparable to thermocouples for recording soil temperatures during fires. Finally, we present a case study using iStakes and SheFire to estimate in situ soil heating during a prescribed fire and demonstrate how observed heating regimes would influence seed and tree root vascular cambium survival at different soil depths. This measurement‐modeling framework provides a cutting‐edge approach for describing soil temperature regimes (i.e., soil heating) through a soil profile and predicting biological responses. 
    more » « less
  6. Abstract Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the “firehose” of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways towards mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future. 
    more » « less
  7. Abstract Fire is a powerful ecological and evolutionary force that regulates organismal traits, population sizes, species interactions, community composition, carbon and nutrient cycling and ecosystem function. It also presents a rapidly growing societal challenge, due to both increasingly destructive wildfires and fire exclusion in fire‐dependent ecosystems. As an ecological process, fire integrates complex feedbacks among biological, social and geophysical processes, requiring coordination across several fields and scales of study.Here, we describe the diversity of ways in which fire operates as a fundamental ecological and evolutionary process on Earth. We explore research priorities in six categories of fire ecology: (a) characteristics of fire regimes, (b) changing fire regimes, (c) fire effects on above‐ground ecology, (d) fire effects on below‐ground ecology, (e) fire behaviour and (f) fire ecology modelling.We identify three emergent themes: the need to study fire across temporal scales, to assess the mechanisms underlying a variety of ecological feedbacks involving fire and to improve representation of fire in a range of modelling contexts.Synthesis: As fire regimes and our relationships with fire continue to change, prioritizing these research areas will facilitate understanding of the ecological causes and consequences of future fires and rethinking fire management alternatives. 
    more » « less